
Core RAG Architecture with AlloyDB
AI
Retrieval Augmented Generation Architecture and Implementation
Example

Christoph Bussler

8 min read · Just now

AlloyDB AI provides a built-in embedding retrieval function embedding() .
The goal of this blog is to provide a core RAG (Retrieval Augmented
Generation) architecture using AlloyDB AI’s functionality like embedding() as
much as possible. Further improvements or extensions are discussed at the
end of the blog.

Preliminaries

The core RAG architecture in this blog focuses on text. However, RAG in
general can be based on any type of artifact like text, image, audio, or video
or their combination for which an embedding generation exists.

In this blog I use AlloyDB AI’s database functionality to large extent to
implement a core RAG architecture. AlloyDB AI uses the PostgreSQL

https://chbussler.medium.com/?source=post_page-----7c7388f33ff1--------------------------------
https://chbussler.medium.com/?source=post_page-----7c7388f33ff1--------------------------------
https://cloud.google.com/alloydb/ai
https://towardsdatascience.com/retrieval-augmented-generation-intuitively-and-exhaustively-explain-6a39d6fe6fc9
https://towardsdatascience.com/retrieval-augmented-generation-intuitively-and-exhaustively-explain-6a39d6fe6fc9

extension pgvector for indexing and similarity search. As such AlloyDB AI
can be used as a vector database (Vector Databases (are All The Rage)).

As a side note, AlloyDB AI runs not only as a managed service in Google
Cloud, but also as an installable version on a VM or laptop as well. The
following was implemented on an installed version on my laptop.

Overview of core RAG architecture in two diagrams

A RAG architecture can be structured along two workflows that can execute
concurrently and continuously:

Embedding generation and storage: Generating and storing embeddings
for text chunks that are extracted from documents or retrieved from a
data management system

Query execution: querying embeddings from user prompts and post-
processing the results through, e.g., prompt engineering

The following two diagrams show the two workflows indicating the elements
of the functionality that is implemented with AlloyDB AI and the elements
that that are implemented outside the AlloyDB AI database.

Rectangles with sharp corners represent functionality, rectangles with round
corners represent data. Detailed explanations follow the diagrams.

The workflow for embedding generation and storage is (the dashed line is a
foreign key relationship):

https://github.com/pgvector/pgvector
https://medium.com/google-cloud/vector-databases-are-all-the-rage-872c888fa348
https://console.cloud.google.com/alloydb
https://console.cloud.google.com/alloydb
https://cloud.google.com/alloydb/docs/omni/install#ml

Embedding Generation and Storage

The workflow for query execution is:

Query Execution (“search”)

Embedding generation and storage
This section discusses the following diagram in more detail (same diagram
as above):

Embedding Generation and Storage

Document management and text chunking

Text chunks are extracted from documents and stored in AlloyDB AI.
Document management and text chunk extraction (text chunking) are done
outside AlloyDB AI and are a significant area of design decisions and
implementation in itself.

Here is a discussion on text chunking and its complexity: How to Chunk Text
Data — A Comparative Analysis. This video is a brief discussion on Semantic
Chunking. Example discussions of text chunking are Document Sections:
Better rendering of chunks for long documents, How to Optimize Text
Chunking for Improved Embedding Vectorization? This query gives an
impression of the importance of the topic on just one community site:
https://community.openai.com/search?q=chunking.

Storing text chunks and their document relationship

The core RAG architecture provides two related tables, one for storing text
chunks, and one for storing metadata of documents from which text chunks
were extracted.

https://towardsdatascience.com/how-to-chunk-text-data-a-comparative-analysis-3858c4a0997a
https://towardsdatascience.com/how-to-chunk-text-data-a-comparative-analysis-3858c4a0997a
https://www.youtube.com/watch?v=w_veb816Asg
https://www.youtube.com/watch?v=w_veb816Asg
https://community.openai.com/t/document-sections-better-rendering-of-chunks-for-long-documents/329066
https://community.openai.com/t/document-sections-better-rendering-of-chunks-for-long-documents/329066
https://community.openai.com/t/how-to-optimize-text-chunking-for-improved-embedding-vectorization/380369
https://community.openai.com/t/how-to-optimize-text-chunking-for-improved-embedding-vectorization/380369
https://community.openai.com/search?q=chunking

Database table schema

The table text_chunk stores the text chunks and for each a foreign key
relationship to the document it was extracted from. The table document stores
an identifier and an access path that is meaningful in context of the
document management system to retrieve the document (if needed). For
example, an access path could be the URI of Google Cloud Storage resources
(https://cloud.google.com/storage/docs/gsutil#syntax).

The table are kept as simple as possible; your use case might require
additional columns or tables.

The following index (index types are provided by pgvector) is created on the
text_chunk table to improve similarity search performance:

CREATE INDEX embedding_index ON text_chunk
 USING ivf (embedding vector_ip_ops)
 WITH (lists = 1, quantizer = 'SQ8');

Alternative index types are discussed at the end of the blog.

Embedding generation

The table text_chunk contains an embedding corresponding to the text
chunk. This embedding is inserted by an insert trigger when a text chunk is

https://cloud.google.com/storage/docs/gsutil#syntax

inserted by using the function embedding() provided by AlloyDB AI.

CREATE FUNCTION insert_text_chunk_create_embedding()
 RETURNS trigger
 LANGUAGE 'plpgsql'
AS
$$
BEGIN
 SELECT embedding('textembedding-gecko@001', NEW.text)
 INTO NEW.embedding;

 RETURN NEW;
END;
$$;

CREATE TRIGGER insert_text_chunk_trigger
 BEFORE INSERT
 ON text_chunk
 FOR EACH ROW
EXECUTE PROCEDURE insert_text_chunk_create_embedding();

This approach ensures that

A text chunk is related to the document it was extracted from

Each text chunk in the system has a corresponding embedding

As documents are added to the system, text chunks are extracted from them
and inserted into the core RAG architecture. This can take place “forever”.
Each time a text chunk is inserted, the corresponding embedding is created
and inserted as well.

This continuous addition of document and text chunks can take place while
in parallel query execution (next section) is performed.

Query execution (“search”)
This section discusses the following diagram in more detail (same diagram
as above):

Query Execution (“search”)

Search in context of the core RAG architecture executes similarity search on
the table text_chunk .

AlloyDB AI as a derivative of PostgreSQL supports defining functions that
can be used in SQL statements. In this example, I implemented two search
functions (the operator <=> , one of several, is provided by pgvector):

CREATE FUNCTION search(IN p_prompt VARCHAR, IN p_limit INT)
 RETURNS TABLE
 (
 text TEXT,
 document_id INTEGER
)
 LANGUAGE 'plpgsql'
AS

$$
BEGIN
 RETURN QUERY
 SELECT tc.text, tc.document_id
 FROM text_chunk tc
 ORDER BY tc.embedding <=> embedding(
 'textembedding-gecko@001', p_prompt)
 LIMIT p_limit;
END;
$$;

CREATE FUNCTION search(IN p_prompt VARCHAR)
 RETURNS TABLE
 (
 text TEXT,
 document_id INTEGER
)
 LANGUAGE 'plpgsql'
AS
$$
BEGIN
 RETURN QUERY
 SELECT *
 FROM search(p_prompt, 5);
END;
$$;

One function sets a default limit, whereas the other supports specifying the
limit at invocation time. The latter helps when performing initial exploratory
searches as it supports the user to get an impression of the vector space
before narrowing it down.

To search, a function is invoked in a SQL statement:

SELECT * FROM search('How fast are GPUs executing code?')

Extended search returning documents

Another search function returns for each text chunk the corresponding
document as well, including the document access path:

CREATE FUNCTION search_doc(IN p_prompt VARCHAR, IN p_limit INT)
 RETURNS TABLE
 (
 text TEXT,
 document_id INTEGER,
 document_access_path VARCHAR
)
 LANGUAGE 'plpgsql'
AS
$$
BEGIN
 RETURN QUERY
 SELECT tc.text, tc.document_id, d.document_access_path
 FROM text_chunk tc,
 document d
 WHERE tc.document_id = d.document_id
 ORDER BY tc.embedding <=> embedding(
 'textembedding-gecko@001', p_prompt)
 LIMIT p_limit;
END;
$$;

The document access path being returned by query execution allows a client
to make the document access path available as well so that document
retrieval is possible immediately upon query result availability.

The searches are similarity searches based on distance metrics. pgvector
provides several of those and later alternative implementations are
discussed.

Prompt engineering as extension to query execution

The diagram shows a component called “Prompt Engineering” subsequent to
the user search. This is indicating that searching embeddings might not be

sufficient for your use case and that you might consider post-processing of
query execution results in context of LLMs to make the vector similarity
search results more accessible to end users. More on the topic of prompt
engineering is introduced later in the blog.

Regular pgvector parameter review

pgvector implements parameters like lists and probes
(https://github.com/pgvector/pgvector#ivfflat,
https://github.com/pgvector/pgvector#query-options). Review those on a
regular basis to decide if the values have to be changed for an optimal
system.

Core architecture design decisions
If you build a core architecture in AlloyDB AI, you have to make at least the
following design decisions:

Table specifications to store text chunks, their embeddings, and any
additional data clients might need when querying the system. Above
showed storing document metadata as an example.

Index type used for embeddings that support your use case best.

Embedding generation for text chunks. Above design uses triggers to
ensure immediate storage of embeddings for each inserted text chunk.

Similarity query implementation and which similarity metrics to use
depending on your use case.

Alternative design decisions and extensions

The following is a list of topics that present alternatives or extensions to a
core RAG architecture on AlloyDB AI.

https://github.com/pgvector/pgvector#ivfflat
https://github.com/pgvector/pgvector#query-options

Indexing and similarity search

In pgvector different types of indexes are available
(https://github.com/pgvector/pgvector#indexing). Your use case dictates
which index type to use.

The same is true for distance metric and similarity search
(https://github.com/pgvector/pgvector#querying). Different operators are
available that use a specific distance metric. Chose the appropriate one for
your use case.

Prompt engineering

As indicated in the Query Execution diagram earlier, queries results
obtaining embeddings can be further post-processed using prompt
engineering to result in a better answer with the help of a Large Language
Model (LLM).

Some resources (and a lot more exist) on prompt engineering are the
following:

Prompt engineering

Should you Prompt, RAG, Tune, or Train? A Guide to Choose the Right
Generative AI Approach

Prompt Engineering: A Practical Example

Prompt engineering receives a lot of attention and different techniques exist
to improve embedding query results.

High volume text chunk insertions

The above implementation computes the embedding for each inserted text
chunk using an insert database trigger. If you have a high volume of text

https://github.com/pgvector/pgvector#indexing
https://github.com/pgvector/pgvector#querying
https://en.wikipedia.org/wiki/Prompt_engineering
https://medium.com/@pandey.vikesh/should-you-prompt-rag-tune-or-train-a-guide-to-choose-the-right-generative-ai-approach-5e264043bd7d
https://medium.com/@pandey.vikesh/should-you-prompt-rag-tune-or-train-a-guide-to-choose-the-right-generative-ai-approach-5e264043bd7d
https://realpython.com/practical-prompt-engineering/

chunk inserts at a high frequency, you might consider changing the trigger
so that it computes the embedding for batch sizes of text chunks. For
example, after 1000 inserts the embedding generation takes place.

Another alternative is to decouple the inserting of text chunks from the
embedding generation and initiate the latter from external to the database
instead of an insert trigger. However, in this case a client system has to
ensure it triggers the embedding generation.

Additional function abstractions

Instead of clients accessing tables for inserting text chunks or documents
you can encapsulate the functionality in functions and make those
accessible to clients.

For example, a function insert_text_chunk() or a function insert_document()
could abstract the table operations properly.

A function delete_document() could delete the document and all
corresponding text chunks.

Using alternative embedding models

AlloyDB AI provides currently a specific set of embedding models like
textembedding-gecko@001 (https://cloud.google.com/alloydb/docs/ai/work-
with-embeddings#generate). If you need to use an embedding model not
supported by AlloyDB AI, a client has generate embeddings and store them
itself.

Full text search

PostgreSQL provides full text search functionality as well
(https://www.crunchydata.com/blog/postgres-full-text-search-a-search-

https://cloud.google.com/alloydb/docs/ai/work-with-embeddings#generate
https://cloud.google.com/alloydb/docs/ai/work-with-embeddings#generate
https://www.crunchydata.com/blog/postgres-full-text-search-a-search-engine-in-a-database

engine-in-a-database). For your use case it might be relevant or interesting to
provide full text search in addition to the similarity search.

Summary
AlloyDB AI providing the function embedding() makes is possible to
implement embedding related functionality (embedding generation and
similarity search) within the boundaries of the database, reducing the
architectural complexity of database clients in a RAG architecture

However, AlloyDB AI does not enforce the use of embedding() and therefore
it supports alternative RAG architectures as well that rely on the embedding
generation taking place outside of the database functionality.

As an architect and designer, you therefore have the option to chose
architectural approaches to RAG, or even combine several approaches if
your use case benefits from it.

References

Some key AlloyDB AI references are as follows. They lead you to further
references as well.

AlloyDB AI

Work with vector embeddings

AlloyDB AI Embedding Lab

Building AI-powered apps on Google Cloud databases using pgvector,
LLMs and LangChain

Open in app

Search Write

https://www.crunchydata.com/blog/postgres-full-text-search-a-search-engine-in-a-database
https://cloud.google.com/alloydb/ai
https://cloud.google.com/alloydb/docs/ai/work-with-embeddings
https://codelabs.developers.google.com/codelabs/alloydb-ai-embedding
https://cloud.google.com/blog/products/databases/using-pgvector-llms-and-langchain-with-google-cloud-databases
https://cloud.google.com/blog/products/databases/using-pgvector-llms-and-langchain-with-google-cloud-databases
https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2F7c7388f33ff1&%7Efeature=LiOpenInAppButton&%7Echannel=ShowPostUnderUser&source=---two_column_layout_nav----------------------------------
https://medium.com/?source=---two_column_layout_nav----------------------------------
https://medium.com/new-story?source=---two_column_layout_nav----------------------------------
https://medium.com/me/notifications?source=---two_column_layout_nav----------------------------------

